
A SIMPLE WAY TO CAPTURE NETWORK TRAFFIC:
THE WINDOWS PACKET CAPTURE (WINPCAP) ARCHITECTURE

Mihai Dorobanţu, M.Sc., Mihai L. Mocanu, Ph.D.

Department of Software Engineering, School of Automation, Computers and
Electronics, University of Craiova, 13 A.I. Cuza Str., 1100 Craiova, Romania

Phone: (251) 435724/ext.163, Fax: (251) 438198, Elm: dmihai@nt.comp-craiova.ro

Abstract: The paper describes the software
architecture for packet capture and network analysis for
Win32 platforms. Library calls from a component
added to the OS, called WinPCap, can be used to
capture network packets and to generate traffic. Traffic
generation can be then used to test software components
(capture applications) or hardware components
(network adapters, modems) in a large variety of tools
(applications) specifically designed for network
analysis, troubleshooting, security and/ or monitoring.
A tool called PCapture, designed and implemented by
us, is presented in the final part of the paper.

Key words: packet capture, network analysis

Introduction

The software architecture for packet capture and

network analysis for Win32 platforms we intend to
describe in this paper contains a library (WinPCap),
which adds to the operating system the ability to
capture efficiently the traffic from different kinds of
networks using the network adapter of the machine.

The systems based on Unix platform contain a
kernel component used as a capture driver named BPF
(Berkeley Packet Filter). This part of the kernel is the
base of the libpcap library. Unlike Unix platforms,
Windows operating systems haven’t such a component.

The implementation of a similar library used to
capture data is more difficult to realize because it calls
for an interaction with the networking part of the kernel.
This is more difficult in the “Microsoft world” where
kernel source code is not available.

The WinPCap Architecture

WinPcap is an architecture for packet capture and

network analysis for the Win32 platforms. It includes a
kernel-level packet filter, a low-level dynamic link
library (packet.dll), and a high-level and system-
independent library (wpcap.dll, based on libpcap
version 0.6.2).

The packet filter is a device driver that adds to
Windows 95, 98, ME, NT, 2000 and XP the ability to
capture and send raw data from a network card, with the
possibility to filter and store in a buffer the captured
packets.

WinPCap can be used to capture the network
packets and to generate traffic (sending packets through
the network).

Packet.dll is an API that can be used to directly
access the functions of the packet driver, offering a
programming interface independent from Windows.

Wpcap.dll exports a set of high level capture
primitives that are compatible with libpcap, the well-
known Unix capture library. These functions allow to
capture packets in a way independent from the
underlying network hardware and operating system.

WinPCap can capture data sent through current
machine (which is used by WinPCap) or to any
computer from the LAN (only if a hub or a switch does
not direct the traffic - these kinds of equipments tend
the packets through the destination computer).
Generally, generating the traffic is used to test some
software components (capture applications) or hardware
components (network adapters, modems).

Under these considerations, WinPcap can be used
by different kinds of tools for network analysis (for
troubleshooting, security and monitoring):

• Network and protocol analyzers
• Network monitors
• Traffic loggers
• Traffic generators
• Network intrusion detection systems (NIDS)
• Network scanners
• Security tools

WinPCap Structure

To capture data from the network, a capture

application must directly interact with the network
adapter. Therefore the operating system must offer a set
of primitives for capture with a view to communicate
with the adapter. The purpose of these primitives is to
capture network packets transparently from the point of
view of the user and to transfer them to the calling
application.

This part of the kernel should be quick and
efficient in order to capture all the packets in real time
without losing information.

The WinPCap Architecture is a hierarchical
structure on 3 levels (from the network adapter to an
application), shown in figure 1.

mailto:dmihai@nt.comp-craiova.ro

Application

Winpcap.dll

Packet.dll

Packet Capture
Driver

 User
Level

Kernel
 Level

 Network
Adapter

 Packets

Figure 1. The WinPCap Architecture

At the lowest level there is the network adapter. It
is used to capture the packets that circulate in the
network. It can be set to “promiscuous mode” that
means it will accept all the packets even if they are not
intended for current computer.

The Packet Capture Driver is the lowest software
level of the capture structure. It is a part of the kernel
and interacts with the network adapter to obtain
captured packets. It supplies the application a set of
functions used to read /write data from the network at
data-link level.

Packet.dll works at user level, but it is detached
from the capture application. It is a dynamic link library
that separates the application from capture driver
providing a system-independent capture interface. It
allows user’s application to be executed on different
Windows operating systems without being recompiled.
It represents a set of API functions used to access the
capture driver directly.

WinPCap.dll (the third level) is a static library
that is used by the packet captures part of the
application. It uses the services exported by Packet.dll,
and provides the applications a higher level and a
powerful capture interface. It is statically linked; it
means it is part of the application that uses it.

The user interface is the highest part of the capture
application. It manages the interaction with the user and
displays the result of a capture.

The user’s application receives the captured
information and interprets it in order to obtain
significant data. Because of the great number of
communication protocols, the user’s applications should
be flexible and modular.

A final remark to this description should be useful:
the use of term packet here may be not very accurate
but is most expressive. Capture process is done at Data-
Link Layer and the PDU (Protocol Data Units) for this
layer is the frame (according to ISO/OSI Model).

The Format of a WinPCap Application

In WinPcap 3.0, the final stable release of this

package, the main improvements worth to be mentioned
are:

- kernel buffering rewritten from scratch
- experimental support for remote capture.

The support for SMP machines has been included
starting from version 3.0, but only physical interfaces
are supported (this is a limitation of Windows and not
of WinPcap). All WinPcap can run on the main Win32
operating systems: Windows 95,98,ME, NT4 and 2000,
but for Windows XP, WinPcap version 2.3 or higher is
required.

The WinPCap action is based on packets capture
at the network adapter level. Therefore, any application
using WinPCap must follow the steps summarized
below:
• Specify the network adapter which will be used for

capture
• Initialize winpcap (mention the network adapter if

the capture is on-line)
• Offer a pattern for the captured data (a TCP/IP

structure for example), so it can be done a cast at
this pattern and obtain significant information
(complex applications offer patterns for majority
protocols)

• Analyze captured data according with the
application type (captured data can be saved and
processed off-line)

• Close the capture session

The first step in using the WinPCap Library is to
select a network adapter. This adapter can be specified
in two ways. The first way is by adding its name as
argument in the command line (this works with a trivial
application):
 int main(int argc, char *argv[])
 {
 char *dev = argv[1];
 printf("Network Adapter: %s\n", dev);
 return(0);
 }

The second technique uses the function
pcap_lookupdev() to extract the list of all the adapters
presented on current machine:
 int main()
 {
 char *dev, errbuf[PCAP_ERRBUF_SIZE];
 dev = pcap_lookupdev(errbuf);
 printf("Network Adapters:%s\n", dev);
 return(0);
 }

After the selection of the network adapter, the next
step is to initialize the capture session. This is done with
use pcap_open_live(). This WinPCap function opens a
capture session. It returns a handler to the current
session and it is used for on-line capture. A similar
function is used to retrieve saved data-
pcap_open_offline().

...
pcap_t *handle;
handle = pcap_open_live(dev, BUFSIZ, 1,

0, errbuf);
...

The pcap_open_live() function specifies the
network adapter(dev) and sets it to normal/
promiscuous mode (third argument). An important
feature of WinPCap Library is that it can filter the

traffic. Many times, we are interested in watching only
one kind of traffic (for example data sent/received on
23 port - telnet). In these cases filters are set to obtain
only relevant information.

To filter the traffic, WinPCap Library offers two
functions: pcap_compile() and pcap_setfilter(). That is,
first time a filter must be compiled (using the first
function) and then applied. Only after the capture
session is opened, a filter can be applied.

#include “pcap.h”
...
// Handler to current capture session
 pcap_t *handle;
// Network Adapter
 char dev[] =
"eth0";
// Error Buffer
 char errbuf[PCAP_ERRBUF_SIZE];
// Filter Variable
struct bpf_program filter;
// Filter Expression
char filter_app[] = "port 23";
// Network Adapter Mask
bpf_u_int32 mask;
// Network Adapter IP Address
bpf_u_int32 net;
// Obtain IP Address and Mask
pcap_lookupnet(dev, &net, &mask, errbuf);
// Open Capture Session
handle = pcap_open_live(dev, BUFSIZ, 1, 0,
errbuf);
// Compile the filter
pcap_compile(handle, &filter, filter_app, 0,
net);
// Apply compiled filter
pcap_setfilter(handle, &filter);
…

The WinPCap Library contains the function
pcap_lookupnet() which retrieves IP address and mask
of a specified network adapter. The code above first
opens a capture session and watches the 23-port traffic
by applying a simple filter.

The most important thing is to capture the packets
(so far, we open a capture session and apply a filter
without capturing anything). There are two techniques
for capture data. The first technique uses the function
pcap_next() to capture only one packet:
int main()
{
// Handler to current capture session
 pcap_t *handle;
// Network Adapter
 char dev[] = "eth0";
// Error Buffer
 char errbuf[PCAP_ERRBUF_SIZE];
// Filter Variable
 struct bpf_program filter;
// Filter Expression
 char filter_app[] = "port 23";
// Network Adapter Mask
 bpf_u_int32 mask;
// Network Adapter IP Address
 bpf_u_int32 net;
// Packet Header
 struct pcap_pkthdr header;
// Captured Packet
 const u_char *packet;
// Obtain Network Adapter
 dev = pcap_lookupdev(errbuf);
// Obtain IP Address and Mask

pcap_lookupnet(dev,&net,&mask, errbuf);
// Open capture session in promiscuous mode

handle = pcap_open_live(dev, BUFSIZ, 1, 0,
errbuf);

// Compile & Apply the Filter
pcap_compile(handle, &filter, filter_app,
0, net);
pcap_setfilter(handle, &filter);

// Capture one packet
 packet = pcap_next(handle, &header);
// Display Packet Length
 printf("Captured a packet with length of

[%d]\n", header.len);
// Close Capture Session

 pcap_close(handle);
 return(0);
}

The second technique for capturing a packet is
more complicated but more helpful. It uses a loop to
capture all packets received this time. Once the adapter
is opened, the capture can be started with
pcap_dispatch() or pcap_loop(). These functions are
similar, the difference is that pcap_dispatch() is granted
to return when it expires while pcap_loop() doesn't
return until the specified number of packets have been
captured, so it can block for an arbitrary period on a few
utilized network. The call pcap_loop() is used in simple
applications, while pcap_dispatch() is normally
preferred in a more complex program.

After we capture one packet (or more), we may
want to interpret it. The natural way to interpret a
packet is to cast it to a defined pattern. Complex
applications define patterns for different kinds of
communication protocols and display information on
any captured data.

Let’s consider we grabbed a TCP/IP packet and
we want to extract the information on this type of
protocol. Because it is a TCP/IP packet, it should have
an Ethernet Header (Ethernet Network), an IP Header
and a TCP Header followed by sending data. First step
in interpreting a packet is to cast it to Ethernet pattern.
Now we are obtaining information about next protocol
(IP Protocol for our example). The packet without
Ethernet Header is cast again to IP pattern and
analyzed. If we have a TCP/IP packet, the process ends
by converting it to a TCP pattern. Now we have all the
information about this captured packet.
…
// Ethernet Header
 const struct hdr_ethernet *ethernet;
// IP Header
 const struct hdr_ip *ip;
// TCP Header
 const struct hdr_tcp *tcp;
// Packet Data
 const char *data;
// Headers Length
 int size_ethernet = sizeof(struct
hdr_ethernet);
 int size_ip = sizeof(struct hdr_ip);
 int size_tcp = sizeof(struct hdr_tcp);
// Simple Conversion
 ethernet=(structhdr_ethernet*)(packet);
 ip=(structhdr_ip*)(packet+size_ethernet);
 tcp = (struct hdr_tcp*) (packet+size_ethernet

+size_ip);
 data = (u_char *)(packet+size_ethernet+

size_ip+size_tcp);

As an Ethernet Header has 14 bytes, IP Header 20
bytes and TCP Header 20 bytes, the u_char pointer
represents the memory address where we can find
information about the captured packet, and header

dimensions can differ from a platform to another. This
is the reason why we were using the sizeof() function.

The WinPCap Architecture is generally used for
capture traffic but it is capable to generate traffic by
sending packets through the network. Generating traffic
is useful in analyzing capture applications and hardware
devices. We are interested in the percentage of lost
packetsfor instance, an application that has captured
only 100 packets from 1000, it’s obvious that it should
be retouched.

The function used for sending packets is
pcap_sendpacket(). It sends packets formatted by us
(according to communication protocols) through
specified computer.

Since WinPcap is implemented as a protocol,
therefore it is able to capture the packets, but it can't be
used to drop them. The filtering capabilities of WinPcap
work only on the sniffed packets. In order to intercept
the packets before the TCP/IP stack, an intermediate
driver needs to be created by or provided to the network
administration team.

The PCapture Application

PCapture is an interactive tool which uses the

WinPCap architecture and C/C++ calls for packet
captures. Although we used for its interface the MFC

(Microsoft Foundation Class) functions, PCapture has a
certain degree of independence from the OS, by using
the “compatible” calls of WinPCap. Use of threads
reduces somehow the predictibility of application
behavior only to systems similar to Windows NT, 2000
or XP (we noticed non-deterministic behavior during
tests on Windows 98 or ME).

The tool is just a preliminary step; it achieves the
capture of all packets in teh network and the
specification of their type. For “standard” packet types
like TCP/IP and UDP the component fields of the
headers are specified, shaped as a tree structure. Going
towards the superior level (Application) requires the
definition of patterns, corresponding to the types of
protocols on this level.

This tool has options for loading and saving
capture sessions, using disk files. It is also very simple
and friendly from the UI (user interface) point of view.
The user can easily select the capture mode, filters,
adaptors a.o. An interesting and useful feature proved to
be the refreshing option, by which re-filtering of
already captured packets is achieved. In other words,
although the capture session may be ended, if the
number of packets is too big making their analysis too
difficult, a new filter can be selected and the screen
refreshed accordingly. A snapshot of the captures
obtained during a session is shown in figure 2.

Figure 2. The PCapture Tool

Conclusion

The purpose of this article is to present a simple

way of capturing the network traffic using the functions

supplied by the WinPCap Architecture. This library
contains a lot of useful primitives and it is compatible
with another library used in the same purposes libpcap
library.

References

WinPCap Home Page – http://winpcap.polito.it

Loris Degioanni, Development of an Architecture for Packet
Capture and Network Traffic Analysis, Graduation Thesis,
Politecnico Di Torino (Turin, Italy, Mar. 2000),
http://winpcap.polito.it/docs/th_degio.zip

Fulvio Risso, Loris Degioanni, An Architecture for High
Performance Network Analysis, Proceedings of the 6th IEEE
Symposium on Computers and Communications (ISCC
2001), Hammamet, Tunisia, July 2001

Tim Carstens, Programming with pcap, tutorial,
http://broker.dhs.org/pcap.org

Martin Casado, Packet Capture With libpcap and other Low
Level Network Tricks, tutorial, http://www.cet.nau.edu/
~mc8/Socket/Tutorials/section1.html

http://winpcap.polito.it
http://winpcap.polito.it/docs/th_degio.zip
http://broker.dhs.org/pcap.org
http://www.cet.nau.edu/

